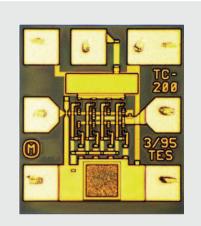

Keysight Technologies HMMC-5200 DC-20 GHz HBT Series Shunt Amplifier 1GC1-8000

Data Sheet

Features

- High bandwidth, F_{-1 dB}:
 21 GHz typical
- Moderate gain:9.5 dB ±1 dB @ 1.5 GHz
- P_{-1 dB} @ 1.5 GHz:
 12.5 dBm typical
- Low l/f noise corner:< 20 kHz typical
- Single supply operation:> 4.75 volts @ 44 mA typical
- Low power dissipation:190 mW typical for chip


Description

The HMMC-5200 is a DC to 20 GHz, 9.5 dB gain, feedback amplifier designed to be used as a cascadable gain block for a variety of applications. The device consists of a modified Darlington feedback pair which reduces the sensitivity to process variations and provides 50 ohm input/output port matches. Furthermore, this amplifier is fabricated using WPTC's Heterojunction Bipolar Transistor (HBT) process which provides excellent process uniformity, reliability and 1/f noise performance. The device requires a single positive supply voltage and generally operates Class-A for good distortion performance.

Absolute Maximum Ratings¹

Symbol	Parameters/conditions	Min	Max	Units
V _{CC}	VDC pad voltages		8.0	Volts
V_{PAD}	Output pad voltages		3.5	Volts
Pin	RF input power, continuous		+6	dBm
TJ	Junction temperature		+150	°C
T _{op}	Operating temperature	-55	+85	°C
T _{st}	Storage temperature	-65	+170	°C
T _{max}	Maximum assembly temperature		+300	°C

¹ Operation in excess of any one of these ratings may result in permanent damage to this device. For normal operation, all combined bias and thermal conditions should be chosen such that the maximum junction temperature (T_J) is not exceeded. T_A = 25°C except for T_{OD}, T_{st}, and T_{max}

Chip Size: $410 \times 460 \ \mu m \ (16.1 \times 18.1 \ mils)$ Chip Size Tolerance: $\pm 10 \ \mu m \ (\pm 0.4 \ mils)$ Chip Thickness: $127 \pm 15 \ \mu m \ (5 \pm 0.6 \ mils)$ RF Pad Dimensions: $70 \times 70 \ \mu m \ (2.8 \times 2.8 \ mils)$ or larger

DC Specifications/Physical Properties¹

(Typicals are for V_{CC} = +5 V, R_{OUT} = 64 Ω)

Symbol	Parameters/conditions	Min.	Тур.	Max	Units
V _{CC}	Supply voltage	4.75	6.0	5.5	volts
I _{C1}	Supply voltage	14.5	17	20	mA
I _{C2}	Stage-two supply current	26	29	32	mA
I _{C1} + I _{C2}	Total supply current		46		mA
$\theta_{\vartheta\text{-bs}}$	Thermal resistance 1 (junction-to-backside at TJ = 150° C) 2	340	°C/Watt		

RF Specifications

 $(T_A = 25 \, ^{\circ}\text{C}, \, V_{CC} = +5 \, \text{V}, \, R_{out} = 64 \, \Omega, \, 50 \, \Omega \, \text{system})$

Symbol	Parameters/conditions	Min.	Тур.	Max.	Units
BW	Operating bandwidth (f–3 db)	20			GHz
BW	Operating bandwidth (ff-1 db)		21		GHz
S ₂₁	Small signal gain (@ 1.5 GHz)	8.5	9.7	10.5	dB
Δ Gain	Small signal gain flatness (DC to 5 GHz) Small signal gain flatness (DC to 20 GHz)		± 0.2 ± 1		dB
TC	Temperature coefficient of gain (DC to 13 GHz) Temperature coefficient of gain (13 to 20 GHz)		0.004 0.02		dB/°C
(RL _{in})MIN	Minimum input return loss (DC to 15 GHz) Minimum input return loss (15 to 20 GHz)		–15 –12		dB
(RLout)MIN	Minimum output return loss		-15		dB
Isolation	Reverse isolation		-15		dB
Pf _{-1 dB}	Output power at 1 dB gain compression:		(@1.5GHz) (@5GHz) (@10GHz) (@15GHz) (@20GHz)	12.5 12.5 11.7 10.6 8.0	dBm
P _{sat}	Saturated output power		(@ 1.5 GHz)	13	dBm
NF	Noise figure		(@1GHz) (@6GHz) (@10GHz) (@15GHz) (@16GHz) (@18GHz)	6.5 6.8 7 7.5 8	dB

Backside ambient operating temperature $T_A = T_{op} = 25^{\circ}\text{C}$ unless otherwise noted. Thermal resistance (°C/Watt) at a junction temperature T (°C) can be estimated using the equation: $_{\theta}(T) \cong _{\theta}(T_J) [T(^{\circ}\text{C})+273] / [T_J(^{\circ}\text{C})+273] \text{ where } _{\theta}(T_J = 150^{\circ}\text{C}) = _{\theta J-bs}.$

Applications

The HMMC-5200 can be used for a variety of applications requiring moderate amounts of gain and low power dissipation in a 50 Ω system.

Biasing and Operation

The HMMC-5200 can be operated from a single positive supply. This supply must be connected to two points on the chip, namely the V_{CC} pad and the output pad. The supply voltage may be directly connected to the V_{CC} pad as long as the voltage is between +4.75 to +7 volts; however, if the supply is higher than +7 volts, a series resistor (R_{CC}) should be used to reduce the voltage to the V_{CC} pad. See the bonding diagram for the equation used to select R_{CC} . In the case of the output pad, the supply voltage must be connected to the output transmission line through a resistor and an inductor. The required value of the resistor is given by the equation:

$$R_{out} = 35.7 V_{supply} - 114.3 \Omega$$

where V_{supply} is in volts. If R_{out} is greater than 300 Ω , the inductor may be omitted, however, the amplifier's gain may be reduced by ~0.5 dB. Figure 4 shows a recommended bonding strategy.

The chip contains a backside via to provide a low inductance ground path; therefore, the ground pads on the IC should not be bonded.

The voltage at the IN and OUT pads of the IC will be approximately 3.2 volts; therefore, DC blocking caps should be used at these ports.

Assembly Techniques

It is recommended that the RF input and RF output connections be made using 0.7 mil diameter gold wire. The chip is designed to operate with 0.1- 0.3 nH of inductance at the RF input and output. This can be accomplished by using 10 mil bond wire lengths on the RF input and output. The bias supply wire can be a 0.7 mil diameter gold wire attached to the VCC bonding pad.

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

Additional References:

Keysight Technologies application note (5991-3484EN), "GaAs MMIC ESD, Die Attach and Bonding Guidelines", provides basic information on these subjects.

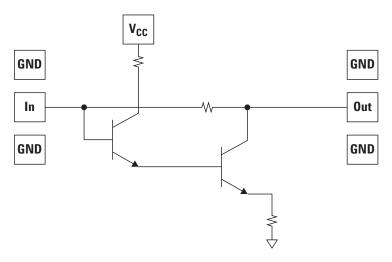
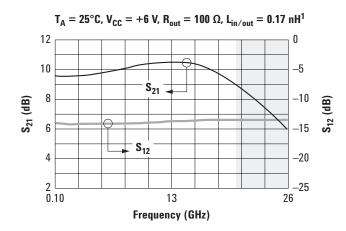



Figure 1. Simplified schematic diagram

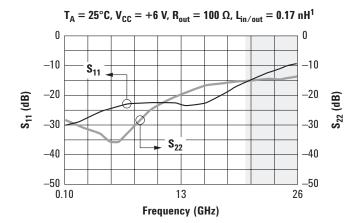


Figure 2. Typical S_{21} and S_{12} response

Figure 3. Typical S_{11} and S_{22} response

S-Parameters¹

(T_A = 25°C, V_{CC} = +6 V, R_{out} = 100 Ω , L_{in/out} = 0.17 nH)

F (011-)	S 11			S12				S21			\$22		
Freq. (GHz)	dB	mag	ang	dB	mag	ang	dB	mag	ang	dB	mag	ang	
0.0	-30.4	0.030	28.9	-14.1	0.197	0.0	9.5	3.013	179.9	-28.4	0.038	-1.5	
1.0	-29.5	0.033	24.9	-14.1	0.195	-2.0	9.5	2.999	171.5	-29.3	0.034	-7.049	
2.0	-28.7	0.037	27.3	-14.2	0.194	-4.1	9.5	2.992	163.2	-30.8	0.029	-15.233	
3.0	-27.2	0.043	33.5	-14.2	0.195	-6.2	9.5	3.009	155.0	-31.5	0.026	-23.9	
4.0	-25.6	0.052	32.4	-14.1	0.195	-8.3	9.6	3.036	146.7	-33.6	0.022	-42.7	
5.0	-24.8	0.058	33.3	-14.1	0.195	-10.4	9.7	3.062	138.2	-35.8	0.016	-72.8	
6.0	-24.0	0.063	31.1	-14.1	0.196	-12.6	9.8	3.097	129.6	-36.6	0.015	-109.3	
7.0	-23.1	0.070	27.1	-14.1	0.197	-14.7	9.9	3.135	120.9	-34.1	0.020	-143.3	
8.0	-22.6	0.074	21.9	-14.0	0.197	-16.9	10.0	3.181	112.0	-30.1	0.031	-166.4	
9.0	-22.5	0.074	15.7	-14.0	0.198	-19.1	10.1	3.225	102.9	-26.9	0.045	176.1	
10.0	-22.3	0.076	8.55	-14.0	0.199	-21.4	10.2	3.266	93.5	-24.4	0.060	164.4	
11.0	-22.4	0.076	-0.36	-13.9	0.200	-23.6	10.3	3.298	83.9	-22.5	0.075	154.2	
12.0	-22.5	0.075	-13.5	-13.9	0.201	-25.8	10.4	3.322	74.2	-20.9	0.090	147.9	
13.0	-22.8	0.072	-27.9	-13.8	0.203	-28.2	10.4	3.338	64.4	-19.5	0.105	141.1	
14.0	-23.2	0.069	-47.1	-13.8	0.204	-30.6	10.4	3.332	54.2	-18.3	0.121	134.2	
15.0	-22.9	0.071	-69.7	-13.7	0.205	-33.1	10.3	3.306	44.0	-17.5	0.133	128.4	
16.0	-22.5	0.075	-93.4	-13.6	0.207	-35.7	10.2	3.253	33.7	-16.7	0.145	122.0	
17.0	-20.8	0.091	-115.1	-13.6	0.208	-37.9	10.0	3.181	23.5	-16.0	0.158	118.6	
18.0	-19.2	0.109	-134.4	-13.5	0.210	-40.8	9.7	3.085	13.4	-15.5	0.167	112.3	
19.0	-17.4	0.134	-149.6	-13.4	0.212	-43.8	9.4	2.975	3.5	-15.3	0.172	109.7	
20.0	-15.8	0.161	-161.7	-13.4	0.213	-46.8	9.0	2.844	-6.0	-15.2	0.172	106.0	
21.0	-14.4	0.190	-172.3	-13.4	0.213	-49.8	8.6	2.706	-15.4	-14.9	0.179	105.1	
22.0	-13.1	0.220	178.7	-13.4	0.213	-52.9	8.1	2.560	-24.4	-14.9	0.178	104.0	
23.0	-12.0	0.250	170.7	-13.4	0.212	-55.6	7.6	2.416	-33.0	-14.7	0.183	103.0	
24.0	-11.0	0.281	163.3	-13.4	0.212	-58.3	7.1	2.272	-41.3	-14.5	0.187	104.9	
25.0	-10.1	0.313	157.0	-13.5	0.211	-61.2	6.5	2.134	-49.2	-14.2	0.193	105.7	
26.0	-9.29	0.343	150.8	-13.4	0.212	-63.9	6.0	1.997	-56.9	-13.8	0.203	106.8	

¹ S-parameter data obtained from on-wafer device measurement plus simulation of input and output wire bond inductance.

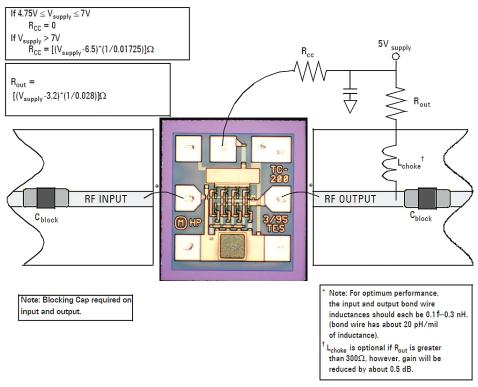


Figure 4. Assembly diagram

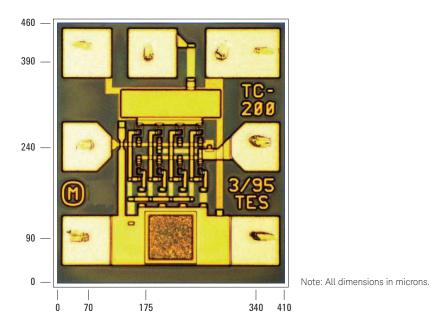


Figure 5. Bonding pad locations

Notes

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other TCA GaAs ICs, for their design should obtain the current production specifications from Keysight Technologies, Inc.. In this data sheet the term typical refers to the 50th percentile performance. For additional information and support email: mmic_helpline@keysight.com.

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

DEKRA Certified ISO 9001:2008

www.keysight.com/quality

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/mmic

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

0800 001122
0800 58580
0800 523252
0805 980333
0800 6270999
1800 832700
1 809 343051
800 599100
+32 800 58580
0800 0233200
8800 5009286
0800 000154
0200 882255
0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
0800 0260637

For other unlisted countries: www.keysight.com/find/contactus (BP-07-10-14)

